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Complex unstable periodic orbits and their manifestation in classical and quantum dynamics
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A model system of three degrees of freedom which has a complex unstable family of periodic orbits is
studied both classically and quantum mechanically. It is shown that the classical and quantum mechani-
cal survival probability functions are in good agreement, and both functions reveal the characteristics of
complex unstable periodic orbits, i.e., the exponential divergence with rotation of nearby trajectories.
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I. INTRODUCTION

The correspondence between classical and quantum
mechanics, particularly in the regime of strong classical
chaos, has been the subject of intense research for the last
20 years [1]. One of the main results of this work was the
discovery of the importance of classical periodic orbits
for a semiclassical approximation of the density of states,
which was first proposed by Gutzwiller [2,3]. This work
was later extended by Balian and Bloch [4], Berry and
Tabor [5], and Miller [6]. An impetus was given by the
study of the stadium model by McDonald and Kaufman
[7] and particularly by Heller [8], who showed that the
eigenfunctions of this chaotic model have increased am-
plitude along the unstable periodic orbits. These results
have been supported by a large number of studies on
model and real systems, such as the hydrogen atom in
strong magnetic fields [9].

Most of these studies are for two degrees of freedom
systems, and relatively little work has been done for
three-dimensional (3D) dynamical systems. Three-
dimensional systems show new dynamical phenomena,
such as the Arnold diffusion, [10], i.e., the nonisolation of
the chaotic regions in phase space, and the phenomenon
of complex instability [11]. The latter is related to unsta-
ble periodic orbits whose monodromy matrix has a
quadruplet of complex eigenvalues out of the unit circle.
This can happen only for systems with three or more de-
grees of freedom. Around complex unstable periodic or-
bits the trajectories diverge exponentially while rotating
with a characteristic frequency. The quantum mechani-
cal counterpart of the classical complex instability has
not been studied yet.

In this article, we investigate the correspondence be-
tween classical and quantum mechanics in the region of
complex unstable periodic orbits. A 2D model, examined
by us before [12], is extended into a 3D system, which
shows complex instability. Specifically, the system which
we employ is described by the Hamiltonian
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H=Lp2+pl+pD)+Lolx’toly’teiz?)
—exly—nx’z . (1)

The values of the parameters are w?=0.9, w?=1.6,
w§=0.4, €=0.08, and 7=0.01. The harmonic frequen-
cies satisfy the following resonance conditions:
0, :0,:0,=3:4:2. The Hamiltonian system of Eq. (1) has
been studied extensively by one of us (G.C.) for several
values of its parameters [13,14].

In our previous study of the 2D model (z =0), we sys-
tematically investigated the correspondence of the most
important families of periodic orbits with the first 100
eigenfunctions. It was found that the family 1:2 (along
the x and y axes) influences the eigenfunctions that have
nodes along the x axis. This family remains stable for the
energy range 0-21 energy units. The corresponding fam-
ily in the 3D system is a 1:2:2 resonance. The parameter
values which we have chosen for the 3D model turn this
family of periodic orbits into complex unstable orbits
from almost the bottom of the well (E =0) up to about 12
energy units. After this energy, the periodic orbit be-
comes stable. Figure 1 shows the (x,y) projection of this
periodic orbit. Thus this family of periodic orbits serves

6.0 ' m]
40 |- .
20 -
00

20|

-4.0 —

6.0 |- | .-

-5.0 0.0 5.0

FIG. 1. Projection of a complex unstable periodic orbit in the
(x,y) plane. Initial conditions x,p,,y,p,,z,p,=0.0, 3.3711353,
0.6230596, 0.0, 0.1892212, 0.0, and E =6. The broken lines
are contours of the potential function at energies 3, 6, and 9.
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as a model for investigating the phenomenon of complex
instability in classical and quantum dynamics.

II. COMPLEX UNSTABLE PERIODIC ORBITS

The stability of a periodic orbit is examined by obtain-
ing the eigenvalues of the monodromy matrix, i.e., by in-
tegrating the variational equations for one period with in-
itial conditions equal the unit matrix. For a time in-
dependent Hamiltonian system the eigenvalues come in
pairs of complex conjugate or inverse numbers, and two
of them are equal to 1. Stable periodic orbits have all ei-
genvalues lying on the unit complex circle. Simply unsta-
ble periodic orbits have one pair of reciprocal real num-
bers, whereas doubly unstable periodic orbits have two
pairs of real reciprocal numbers.

Complex unstable periodic orbits have a quadruplet of
complex conjugate numbers with measures |A| and 1/|A|
different from 1, and thus can appear in systems of at
least three degrees of freedom. In the linear approxima-
tion, the nearby trajectories will diverge or converge to
the periodic orbit according to the law

£(1)=E&(0)exp(tAt )exp(tivt) , (2)

where ¢ is a multiple of the period T, § is the vector of the
differences in the coordinates and conjugate momenta of
the two neighboring trajectories, A is the Lyapunov ex-
ponent which dictates the rate of exponential divergence
(convergence) from the periodic orbit, and v is the fre-
quency of rotation of the neighboring trajectory around
the periodic orbit. Equation (2) will be valid for a not
very long time interval and for not large deviations from
the periodic orbit (see Appendix).

In Table I we store the values of the Lyapunov ex-
ponent, rotational frequency, and period of the complex
unstable periodic orbits for energies up to E=12. Com-
parison of the rotational frequency with the vibrational
frequency along the periodic orbit (==0.948 68) reveals
a ratio of about v:w=~1:3. This type of resonance condi-
tion should appear on a Poincaré surface of section.

Figure 2 shows a projection of a surface of section
x =0, with total energy equal to 6 and on the plane (y,z).
Figure 2(a) shows the early evolution of a nearby trajecto-
ry, and Fig. 2(b) shows the pattern of the surface of sec-

TABLE 1. Lyapunov exponents, rotational frequencies, and
periods of the complex unstable periodic orbit 1:2:2 at several
energies.

Energy A v Period
2 0.002 586 0.31031 6.665 94
3 0.003 934 0.307 04 6.687 18
4 0.005 270 0.303 54 6.708 26
5 0.006 551 0.299 80 6.729 13
6 0.007 725 0.295 80 6.749 78
7 0.008 725 0.291 54 6.770 17
8 0.009 462 0.286 98 6.79027
9 0.009 810 0.28213 6.81006
10 0.009 561 0.276 95 6.829 51
11 0.008 294 0.27141 6.848 59
12 0.004516 0.26549 6.86729
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tion for longer times. From these figures the spiral
motion of the trajectory can be seen, as well as the re-
striction of the trajectory, in a certain region of phase
space [Fig. 2(b)]. The appearance of the three branches
of points in Fig. 2(a), plotted in a clockwise sense, is the
result of the 1:3 approximate resonance condition. The
points in Fig. 2(b) are concentrated along three wings and
give a propellerlike shape to the pattern. A proof of the
spiral motion of a nearby trajectory predicted by the vari-
ational equations, as well as a comparison with the nu-
merical integration of the trajectory, is given in the Ap-
pendix. The question that we have addressed is, what
happens in quantum mechanics, and this is the subject of
the next section.

III. CLASSICAL AND QUANTUM AUTOCORRELATION
FUNCTIONS

To study the temporary behavior of an initial Gaussian
wave packet centered at one point of the complex unsta-
ble periodic orbit we solve the time dependent
Schrodinger equation numerically on a cubic grid with
spectral methods. Specifically, we have used a fast
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FIG. 2. Projection in the (y,z) plane of the Poincaré surface
of section (x =0) of a diverging trajectory from the complex un-
stable periodic orbit (a) for 600 periods and (b) for 2000 periods.
Contours of the potential function are shown at 3, 5, and 7
units.
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Fourier transform technique to evaluate the action of the
Laplacian operator on the wave function, and a second
order finite difference method to propagate the wave
function in time [15]. The autocorrelation function is
then computed as

¢(q,0)dq, (3)

_ it
#i

C()= [ ¢(q,0)exp

where ¢(q,0) denotes the initial Gaussian wave packet,
- q=(x,y,z) and # is the Hamiltonian operator.

Figure 3 shows snapshots of the evolution of the wave
packet initially localized on the periodic orbit that we ex-
amine. Notice that in this figure we plot |#()|? in the
(y,z) plane after obtaining the intersection of the wave
function with the plane x =0.

The classical analog of the quantum mechanical sur-
vival probability function |C(z)|? is given by [16-18]

(0= [ p[q(0),p(0)]p[q(1),p(1)1dqdp . @

plq(0)] is an initial distribution of a batch of trajectories
with initial conditions q(0). p is also a Gaussian distribu-
tion in phase space, and p(tz) is obtained by solving
Hamilton’s equations.

Figure 4 shows both the quantum (continuous line) and
the classical (broken line) autocorrelation functions. The
two curves almost coincide for the total integration time,

about 25 periods of the periodic orbit, and in the inset of
this figure we give a magnification of the last four peaks.

IV. DISCUSSION

The results of the previous section reveal the good
agreement between classical and quantum mechanics.
Comparing the snapshots of the wave packet in Fig. 3
with Fig. 2(b) we can see that the wave packet is restrict-
ed in the same region of the configuration space as the
corresponding projection of the Poincaré surface of sec-
tion. Figures 3(e)-3(h) also show that the high amplitude
of the wave function occurs at the corners of the classical
surface of section [Fig. 2(b)], which coincide with the
turning points of the trajectory.

Comparison of the classical and quantum survival
probability functions is even more revealing. The intensi-
ties of the lines, especially at the early stages of the evolu-
tion, demonstrate the 1:3 relation between the stability
frequency (v) and the vibrational frequency  along the
periodic orbit. Particularly, examination of the classical
autocorrelation function, computed for isolated trajec-
tories close to the periodic orbit, demonstrates that at
time ¢t =3nT, Q(z) takes larger values. The agreement
between classical and quantum autocorrelation functions
emphasizes the common dynamics present in both classi-
cal and quantum mechanics.

FIG. 3. Snapshots of the evolution of an ini-
tial Gaussian wave packet centered on the
periodic orbit shown in Fig. 1. The frames
correspond to the times (a) £ =0, (b) 20.48, (c)
40.96, (d) 61.44, (e) 81.92, () 102.4, (g) 122.88,
and (h) 143.36. The contours correspond to
10%, 30%, 50%, 710%, and 90% of the max-
imum amplitude. Contours of the potential
function (broken lines) are also shown at 3, 5,
and 7 energy units.
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APPENDIX
0.6 For a complex unstable periodic orbit of period T the
. eigenvalues are given by the equations
0.4 g1, 2=e*"(cos6+i sind) ,
. (A1)
02 p3s=e *T(cos6+isind) ,
' where e*”>1and 0<0 <.
0.0 i The corresponding eigenvectors are
Z, ,=Xotiy, ,
0 50 100 150 12~ %Yo (A2)
TIME Z3 4,=ugtiwg .
FIG. 4. Square of the quantum mechanical autocorrelation . .
function (continuous line) and its classical mechanical analog After n periods T the above equations become
(broken line). z,,(nT)=e"*T{[cos(nB)x,—sin(n O)y,]
+i[sin(n6)xy+cos(n0)y,l} ,
(A3)

Heller [19] has extensively studied the correspondence
between classical and quantum survival probability func-
tions for 2D dynamical systems. For unstable periodic
orbits he argued that

|C(t)|*~exp(—At) . (5)

We have shown that in the case of complex unstable
periodic orbits in a 3D system the survival probability
function shows an exponential decay, but with a modula-
tion in the amplitude of the lines dictated by the stability
frequency.

Such a pattern of the quantum autocorrelation func-
tion, which is an observable quantity, leads one to look
for manifestations of complex instability in physical sys-
tems. We have computed the eigenfunctions character-
ized by the periodic orbit 1:2:2, by Fourier transforming
the wave packet, using the eigenenergies obtained also by
a Fourier transform of the correlation function. We
found that these eigenfunctions are of the type (n,0,0),
where n is the quantum number denoting levels having
their nodes along the x axis. In other words, these com-
plex unstable periodic orbits mark eigenfunctions of the
system, as was found for two degrees of freedom systems
both for stable and unstable periodic orbits. The study of
molecular type potentials has shown that complex insta-
bility may be observed in molecules such as HCN [20],
where it was found that periodic orbits of the rotating
type turn from doubly unstable to complex unstable, and
also in acetylene [21].

Summarizing our results, we have shown that the main
characteristics of complex unstable periodic orbits, and
particularly the exponential divergence with a simultane-
ous rotation of nearby trajectories, are reflected both in
the classical and quantum survival probability functions.

~"AT{[cos(n@)uy—sin(n)w,)

ti[sin(n6)uy+cos(nf)wy]} .

z; 4(nT)=e

Orbits with initial conditions xg,y,,uq, W, after n periods
are, respectively,

x(nT)=e"*"[cos(n6)x,—sin(n0)y,] ,
y(nT)=e"*[sin(n0)xy+cos(n8)y,] ,

(A4)
u(nT)=e "*[cos(n@)u,—sin(nd)w,] ,
w(nT)=e " [sin(n)uy+cos(nf)w,] .

Thus an orbit with initial conditions
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FIG. 5. Projection of the spiral invariant curve from a com-
plex unstable periodic orbit (with 8~27/3). The analytically
obtained points (open squares) are compared with the numerical
calculated points (filled squares), which, in most of the cases,
coincide.
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£(0)=c xpt ¢yt c3uptcyWo
after n periods, gives
EnT)=e"T{[c,cos(n0)+c,sin(n6)]x,
+[c,cos(nB)—c,sin(n6)ly,}
+e " T{[cycos(nB)+c,sin(n)lu,y
+[c4cos(nB)—cysin(nB)Iwe} . (AS)

If we take ¢; =1 and ¢, =c3=c,=0 we find that the pro-
jections of £(nT) along the axes i =1,2 are

(A6)
(A7)

&(nT)=e"T[cos(n8)xy, —sin(nO)yy,] ,

&, (nT)=e™T[cos(n0)xy,—sin(n )y, ] -

Eliminating n 6 from Eqgs. (A6) and (A7) we find

eznu(xoz)’m X012 P=(x016,— X261 I

+(oba—yné) - (A8B)

This equation is of the form

a,E34+BiE& 1 E5=—BePAT

with a; >0, ¥,>0, and 8§ <0. Thus, the successive points
with n =1,2, ..., spiral outwards on the plane (£,,§,).

An example is shown in Fig. 5 where the projection of
a spiral curve on the (y,p,) plane is compared with the
numerically computed points. In a similar way an orbit
with ¢; =1 and ¢, =c, =c, =0 spirals inwards.
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